react-native-vision-camera/package/src/FrameProcessorPlugins.ts
2023-10-24 13:44:03 +02:00

214 lines
7.6 KiB
TypeScript

import type { Frame, FrameInternal } from './Frame'
import type { FrameProcessor } from './CameraProps'
import { CameraRuntimeError } from './CameraError'
// only import typescript types
import type TWorklets from 'react-native-worklets-core'
import { CameraModule } from './NativeCameraModule'
import { assertJSIAvailable } from './JSIHelper'
type BasicParameterType = string | number | boolean | undefined
type ParameterType = BasicParameterType | BasicParameterType[] | Record<string, BasicParameterType | undefined>
interface FrameProcessorPlugin {
/**
* Call the native Frame Processor Plugin with the given Frame and options.
* @param frame The Frame from the Frame Processor.
* @param options (optional) Additional options. Options will be converted to a native dictionary
* @returns (optional) A value returned from the native Frame Processor Plugin (or undefined)
*/
call: (frame: Frame, options?: Record<string, ParameterType>) => ParameterType
}
interface TVisionCameraProxy {
setFrameProcessor: (viewTag: number, frameProcessor: FrameProcessor) => void
removeFrameProcessor: (viewTag: number) => void
/**
* Creates a new instance of a native Frame Processor Plugin.
* The Plugin has to be registered on the native side, otherwise this returns `undefined`.
* @param name The name of the Frame Processor Plugin. This has to be the same name as on the native side.
* @param options (optional) Options, as a native dictionary, passed to the constructor/init-function of the native plugin.
* @example
* ```ts
* const plugin = VisionCameraProxy.initFrameProcessorPlugin('scanFaces', { model: 'fast' })
* if (plugin == null) throw new Error("Failed to load scanFaces plugin!")
* ```
*/
initFrameProcessorPlugin: (name: string, options?: Record<string, ParameterType>) => FrameProcessorPlugin | undefined
}
const errorMessage = 'Frame Processors are not available, react-native-worklets-core is not installed!'
let hasWorklets = false
let isAsyncContextBusy = { value: false }
let runOnAsyncContext = (_frame: Frame, _func: () => void): void => {
throw new CameraRuntimeError('system/frame-processors-unavailable', errorMessage)
}
try {
assertJSIAvailable()
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { Worklets } = require('react-native-worklets-core') as typeof TWorklets
isAsyncContextBusy = Worklets.createSharedValue(false)
const asyncContext = Worklets.createContext('VisionCamera.async')
runOnAsyncContext = Worklets.createRunInContextFn((frame: Frame, func: () => void) => {
'worklet'
try {
// Call long-running function
func()
} finally {
// Potentially delete Frame if we were the last ref
const internal = frame as FrameInternal
internal.decrementRefCount()
isAsyncContextBusy.value = false
}
}, asyncContext)
hasWorklets = true
} catch (e) {
// Worklets are not installed, so Frame Processors are disabled.
}
let proxy: TVisionCameraProxy = {
initFrameProcessorPlugin: () => {
throw new CameraRuntimeError('system/frame-processors-unavailable', errorMessage)
},
removeFrameProcessor: () => {
throw new CameraRuntimeError('system/frame-processors-unavailable', errorMessage)
},
setFrameProcessor: () => {
throw new CameraRuntimeError('system/frame-processors-unavailable', errorMessage)
},
}
if (hasWorklets) {
// Install native Frame Processor Runtime Manager
const result = CameraModule.installFrameProcessorBindings() as unknown
if (result !== true)
throw new CameraRuntimeError('system/frame-processors-unavailable', 'Failed to install Frame Processor JSI bindings!')
// @ts-expect-error global is untyped, it's a C++ host-object
proxy = global.VisionCameraProxy as TVisionCameraProxy
// eslint-disable-next-line @typescript-eslint/no-unnecessary-condition
if (proxy == null) {
throw new CameraRuntimeError(
'system/frame-processors-unavailable',
'Failed to install VisionCameraProxy. Are Frame Processors properly enabled?',
)
}
}
export const VisionCameraProxy: TVisionCameraProxy = {
initFrameProcessorPlugin: proxy.initFrameProcessorPlugin,
removeFrameProcessor: proxy.removeFrameProcessor,
setFrameProcessor: proxy.setFrameProcessor,
// TODO: Remove this in the next version
// @ts-expect-error
getFrameProcessorPlugin: (name, options) => {
console.warn(
'"getFrameProcessorPlugin" has been renamed to "initFrameProcessorPlugin". This function will be removed in the next release.',
)
return proxy.initFrameProcessorPlugin(name, options)
},
}
declare global {
// eslint-disable-next-line no-var
var __frameProcessorRunAtTargetFpsMap: Record<string, number | undefined> | undefined
}
function getLastFrameProcessorCall(frameProcessorFuncId: string): number {
'worklet'
return global.__frameProcessorRunAtTargetFpsMap?.[frameProcessorFuncId] ?? 0
}
function setLastFrameProcessorCall(frameProcessorFuncId: string, value: number): void {
'worklet'
if (global.__frameProcessorRunAtTargetFpsMap == null) global.__frameProcessorRunAtTargetFpsMap = {}
global.__frameProcessorRunAtTargetFpsMap[frameProcessorFuncId] = value
}
/**
* Runs the given function at the given target FPS rate.
*
* For example, if you want to run a heavy face detection algorithm
* only once per second, you can use `runAtTargetFps(1, ...)` to
* throttle it to 1 FPS.
*
* @param fps The target FPS rate at which the given function should be executed
* @param func The function to execute.
* @returns The result of the function if it was executed, or `undefined` otherwise.
* @example
*
* ```ts
* const frameProcessor = useFrameProcessor((frame) => {
* 'worklet'
* console.log('New Frame')
* runAtTargetFps(5, () => {
* 'worklet'
* const faces = detectFaces(frame)
* console.log(`Detected a new face: ${faces[0]}`)
* })
* })
* ```
*/
export function runAtTargetFps<T>(fps: number, func: () => T): T | undefined {
'worklet'
// @ts-expect-error
// eslint-disable-next-line @typescript-eslint/no-unsafe-assignment
const funcId = func.__workletHash ?? '1'
const targetIntervalMs = 1000 / fps // <-- 60 FPS => 16,6667ms interval
const now = performance.now()
const diffToLastCall = now - getLastFrameProcessorCall(funcId)
if (diffToLastCall >= targetIntervalMs) {
setLastFrameProcessorCall(funcId, now)
// Last Frame Processor call is already so long ago that we want to make a new call
return func()
}
return undefined
}
/**
* Runs the given function asynchronously, while keeping a strong reference to the Frame.
*
* For example, if you want to run a heavy face detection algorithm
* while still drawing to the screen at 60 FPS, you can use `runAsync(...)`
* to offload the face detection algorithm to a separate thread.
*
* @param frame The current Frame of the Frame Processor.
* @param func The function to execute.
* @example
*
* ```ts
* const frameProcessor = useFrameProcessor((frame) => {
* 'worklet'
* console.log('New Frame')
* runAsync(frame, () => {
* 'worklet'
* const faces = detectFaces(frame)
* const face = [faces0]
* console.log(`Detected a new face: ${face}`)
* })
* })
* ```
*/
export function runAsync(frame: Frame, func: () => void): void {
'worklet'
if (isAsyncContextBusy.value) {
// async context is currently busy, we cannot schedule new work in time.
// drop this frame/runAsync call.
return
}
// Increment ref count by one
const internal = frame as FrameInternal
internal.incrementRefCount()
isAsyncContextBusy.value = true
// Call in separate background context
runOnAsyncContext(frame, func)
}