react-native-vision-camera/docs/docs/guides/FRAME_PROCESSORS_CREATE_OVERVIEW.mdx
Marc Rousavy be30d55df5
docs: Frame Processor Java Types (#183)
* add a few spaces

* Update FRAME_PROCESSORS_CREATE_OVERVIEW.mdx

* Update FRAME_PROCESSORS_CREATE_OVERVIEW.mdx

* Update FRAME_PROCESSORS_CREATE_OVERVIEW.mdx

* Update FRAME_PROCESSORS_CREATE_OVERVIEW.mdx
2021-06-08 10:15:34 +02:00

149 lines
5.6 KiB
Plaintext

---
id: frame-processors-plugins-overview
title: Creating Frame Processor Plugins
sidebar_label: Overview
---
import useBaseUrl from '@docusaurus/useBaseUrl';
## Overview
Frame Processor Plugins are **native functions** which can be directly called from a JS Frame Processor. (See [Frame Processors](frame-processors))
They **receive a frame from the Camera** as an input and can return any kind of output. For example, a `scanQRCodes` function returns an array of detected QR code strings in the frame:
```tsx {4-5}
function App() {
const frameProcessor = useFrameProcessor((frame) => {
'worklet'
const qrCodes = scanQRCodes(frame)
_log(`QR Codes in Frame: ${qrCodes}`)
}, [])
return (
<Camera frameProcessor={frameProcessor} {...cameraProps} />
)
}
```
To achieve **maximum performance**, the `scanQRCodes` function is written in a native language (e.g. Objective-C), but it will be directly called from the VisionCamera Frame Processor JavaScript-Runtime.
### Types
The Frame Processor Plugin Registry API automatically manages type conversion from JS <-> native. They are converted into the most efficient data-structures, as seen here:
| JS Type | Objective-C Type | Java Type |
|----------------------|--------------------------|----------------------------|
| `number` | `NSNumber` (double) | `double` |
| `boolean` | `NSNumber` (boolean) | `boolean` |
| `string` | `NSString` | `String` |
| `[]` | `NSArray` | `Array<Object>` |
| `{}` | `NSDictionary` | `HashMap<Object>` |
| `undefined` | `nil` / `NSNull` | `null` |
| `(any, any) => void` | `RCTResponseSenderBlock` | `(Object, Object) -> void` |
### Return values
Return values will automatically be converted to JS values, assuming they are representable in the ["Types" table](#types). So the following Objective-C frame processor:
```objc
static inline id detectObject(CMSampleBufferRef buffer, NSArray args) {
return @"cat";
}
```
Returns a `string` in JS:
```js
export function detectObject(frame: Frame): string {
'worklet';
const result = __detectObject(frame);
_log(result) // <-- "cat"
}
```
### Parameters
Frame Processors can also accept parameters, following the same type convention as [return values](#return-values):
```ts
const frameProcessor = useFrameProcessor((frame) => {
'worklet'
const codes = scanCodes(frame, ['qr', 'barcode'])
}, [])
```
Or with multiple parameters:
```ts
const frameProcessor = useFrameProcessor((frame) => {
'worklet'
const codes = scanCodes(frame, true, 'hello-world', 42)
}, [])
```
### Long-running Frame Processors
If your Frame Processor takes longer than a single frame interval to execute, or runs asynchronously, you can create a **copy of the frame** and dispatch the actual frame processing to a **separate thread**.
For example, a realtime video chat application might use WebRTC to send the frames to the server. I/O operations (networking) are asynchronous, and we don't _need_ to wait for the upload to succeed before pushing the next frame, so we copy the frame and perform the upload on another Thread.
```objc
static dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0ul);
static inline id sendFrameToWebRTC(CMSampleBufferRef buffer, NSArray args) {
CMSampleBufferRef bufferCopy;
CMSampleBufferCreateCopy(kCFAllocatorDefault, buffer, &bufferCopy);
dispatch_async(queue, ^{
NSString* serverURL = (NSString*)args[0];
[WebRTC uploadFrame:bufferCopy toServer:serverURL];
});
return nil;
}
```
### Async Frame Processors with Event Emitters
You might also run some very complex AI algorithms which are not fast enough to smoothly run at **30 FPS** (**33ms**). To not drop any frames you can create a custom "frame queue" which processes the copied frames and calls back into JS via a React event emitter. For this you'll have to create a Native Module that handles the asynchronous native -> JS communication, see ["Sending events to JavaScript" (Android)](https://reactnative.dev/docs/native-modules-android#sending-events-to-javascript) and ["Sending events to JavaScript" (iOS)](https://reactnative.dev/docs/native-modules-ios#sending-events-to-javascript).
This might look like this for the user:
```tsx
function App() {
const frameProcessor = useFrameProcessor((frame) => {
'worklet'
SomeAI.process(frame) // does not block frame processor, runs async
}, [])
useEffect(() => {
SomeAI.addListener((results) => {
// gets called asynchronously, goes through the React Event Emitter system
console.log(`AI results: ${results}`)
})
}, [])
return (
<Camera frameProcessor={frameProcessor} {...cameraProps} />
)
}
```
This way you can handle queueing up the frames yourself and asynchronously call back into JS at some later point in time using event emitters.
### Benchmarking Frame Processor Plugins
Your Frame Processor Plugins have to be fast. VisionCamera automatically detects slow Frame Processors and outputs relevant information in the native console (Xcode: **Debug Area**, Android Studio: **Logcat**):
<div align="center">
<img src={useBaseUrl("img/slow-log.png")} width="80%" />
</div>
<div align="center">
<img src={useBaseUrl("img/slow-log-2.png")} width="80%" />
</div>
<br />
#### 🚀 Create your first Frame Processor Plugin for [iOS](frame-processors-plugins-ios) or [Android](frame-processors-plugins-android)!