react-native-vision-camera/package/src/FrameProcessorPlugins.ts
Marc Rousavy 036856aed5
chore: Move everything into package/ (#1745)
* Move everything into package

* Remove .DS_Store

* Move scripts and eslintrc to package

* Create CODE_OF_CONDUCT.md

* fix some links

* Update all links (I think)

* Update generated docs

* Update notice-yarn-changes.yml

* Update validate-android.yml

* Update validate-cpp.yml

* Delete notice-yarn-changes.yml

* Update validate-cpp.yml

* Update validate-cpp.yml

* Update validate-js.yml

* Update validate-cpp.yml

* Update validate-cpp.yml

* wrong c++ style

* Revert "wrong c++ style"

This reverts commit 55a3575589c6f13f8b05134d83384f55e0601ab2.
2023-09-01 18:15:28 +02:00

194 lines
6.6 KiB
TypeScript

import type { Frame, FrameInternal } from './Frame';
import type { FrameProcessor } from './CameraProps';
import { CameraRuntimeError } from './CameraError';
// only import typescript types
import type TWorklets from 'react-native-worklets-core';
import { CameraModule } from './NativeCameraModule';
import { assertJSIAvailable } from './JSIHelper';
type BasicParameterType = string | number | boolean | undefined;
type ParameterType = BasicParameterType | BasicParameterType[] | Record<string, BasicParameterType | undefined>;
interface FrameProcessorPlugin {
/**
* Call the native Frame Processor Plugin with the given Frame and options.
* @param frame The Frame from the Frame Processor.
* @param options (optional) Additional options. Options will be converted to a native dictionary
* @returns (optional) A value returned from the native Frame Processor Plugin (or undefined)
*/
call: (frame: Frame, options?: Record<string, ParameterType>) => ParameterType;
}
interface TVisionCameraProxy {
setFrameProcessor: (viewTag: number, frameProcessor: FrameProcessor) => void;
removeFrameProcessor: (viewTag: number) => void;
/**
* Creates a new instance of a Frame Processor Plugin.
* The Plugin has to be registered on the native side, otherwise this returns `undefined`
*/
getFrameProcessorPlugin: (name: string) => FrameProcessorPlugin | undefined;
}
let hasWorklets = false;
let isAsyncContextBusy = { value: false };
let runOnAsyncContext = (_frame: Frame, _func: () => void): void => {
throw new CameraRuntimeError(
'system/frame-processors-unavailable',
'Frame Processors are not available, react-native-worklets-core is not installed!',
);
};
try {
assertJSIAvailable();
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { Worklets } = require('react-native-worklets-core') as typeof TWorklets;
isAsyncContextBusy = Worklets.createSharedValue(false);
const asyncContext = Worklets.createContext('VisionCamera.async');
runOnAsyncContext = Worklets.createRunInContextFn((frame: Frame, func: () => void) => {
'worklet';
try {
// Call long-running function
func();
} finally {
// Potentially delete Frame if we were the last ref
(frame as FrameInternal).decrementRefCount();
isAsyncContextBusy.value = false;
}
}, asyncContext);
hasWorklets = true;
} catch (e) {
// Worklets are not installed, so Frame Processors are disabled.
}
let proxy: TVisionCameraProxy = {
getFrameProcessorPlugin: () => {
throw new CameraRuntimeError('system/frame-processors-unavailable', 'Frame Processors are not enabled!');
},
removeFrameProcessor: () => {
throw new CameraRuntimeError('system/frame-processors-unavailable', 'Frame Processors are not enabled!');
},
setFrameProcessor: () => {
throw new CameraRuntimeError('system/frame-processors-unavailable', 'Frame Processors are not enabled!');
},
};
if (hasWorklets) {
// Install native Frame Processor Runtime Manager
const result = CameraModule.installFrameProcessorBindings() as unknown;
if (result !== true)
throw new CameraRuntimeError('system/frame-processors-unavailable', 'Failed to install Frame Processor JSI bindings!');
// @ts-expect-error global is untyped, it's a C++ host-object
proxy = global.VisionCameraProxy as TVisionCameraProxy;
// eslint-disable-next-line @typescript-eslint/no-unnecessary-condition
if (proxy == null) {
throw new CameraRuntimeError(
'system/frame-processors-unavailable',
'Failed to install VisionCameraProxy. Are Frame Processors properly enabled?',
);
}
}
export const VisionCameraProxy = proxy;
declare global {
// eslint-disable-next-line no-var
var __frameProcessorRunAtTargetFpsMap: Record<string, number | undefined> | undefined;
}
function getLastFrameProcessorCall(frameProcessorFuncId: string): number {
'worklet';
return global.__frameProcessorRunAtTargetFpsMap?.[frameProcessorFuncId] ?? 0;
}
function setLastFrameProcessorCall(frameProcessorFuncId: string, value: number): void {
'worklet';
if (global.__frameProcessorRunAtTargetFpsMap == null) global.__frameProcessorRunAtTargetFpsMap = {};
global.__frameProcessorRunAtTargetFpsMap[frameProcessorFuncId] = value;
}
/**
* Runs the given function at the given target FPS rate.
*
* For example, if you want to run a heavy face detection algorithm
* only once per second, you can use `runAtTargetFps(1, ...)` to
* throttle it to 1 FPS.
*
* @param fps The target FPS rate at which the given function should be executed
* @param func The function to execute.
* @returns The result of the function if it was executed, or `undefined` otherwise.
* @example
*
* ```ts
* const frameProcessor = useFrameProcessor((frame) => {
* 'worklet'
* console.log('New Frame')
* runAtTargetFps(5, () => {
* 'worklet'
* const faces = detectFaces(frame)
* console.log(`Detected a new face: ${faces[0]}`)
* })
* })
* ```
*/
export function runAtTargetFps<T>(fps: number, func: () => T): T | undefined {
'worklet';
// @ts-expect-error
// eslint-disable-next-line @typescript-eslint/no-unsafe-assignment
const funcId = func.__workletHash ?? '1';
const targetIntervalMs = 1000 / fps; // <-- 60 FPS => 16,6667ms interval
const now = performance.now();
const diffToLastCall = now - getLastFrameProcessorCall(funcId);
if (diffToLastCall >= targetIntervalMs) {
setLastFrameProcessorCall(funcId, now);
// Last Frame Processor call is already so long ago that we want to make a new call
return func();
}
return undefined;
}
/**
* Runs the given function asynchronously, while keeping a strong reference to the Frame.
*
* For example, if you want to run a heavy face detection algorithm
* while still drawing to the screen at 60 FPS, you can use `runAsync(...)`
* to offload the face detection algorithm to a separate thread.
*
* @param frame The current Frame of the Frame Processor.
* @param func The function to execute.
* @example
*
* ```ts
* const frameProcessor = useFrameProcessor((frame) => {
* 'worklet'
* console.log('New Frame')
* runAsync(frame, () => {
* 'worklet'
* const faces = detectFaces(frame)
* const face = [faces0]
* console.log(`Detected a new face: ${face}`)
* })
* })
* ```
*/
export function runAsync(frame: Frame, func: () => void): void {
'worklet';
if (isAsyncContextBusy.value) {
// async context is currently busy, we cannot schedule new work in time.
// drop this frame/runAsync call.
return;
}
// Increment ref count by one
(frame as FrameInternal).incrementRefCount();
isAsyncContextBusy.value = true;
// Call in separate background context
runOnAsyncContext(frame, func);
}