import type { Frame, FrameInternal } from './Frame' import type { FrameProcessor } from './CameraProps' import { CameraRuntimeError } from './CameraError' // only import typescript types import type TWorklets from 'react-native-worklets-core' import { CameraModule } from './NativeCameraModule' import { assertJSIAvailable } from './JSIHelper' type BasicParameterType = string | number | boolean | undefined type ParameterType = BasicParameterType | BasicParameterType[] | Record interface FrameProcessorPlugin { /** * Call the native Frame Processor Plugin with the given Frame and options. * @param frame The Frame from the Frame Processor. * @param options (optional) Additional options. Options will be converted to a native dictionary * @returns (optional) A value returned from the native Frame Processor Plugin (or undefined) */ call: (frame: Frame, options?: Record) => ParameterType } interface TVisionCameraProxy { setFrameProcessor: (viewTag: number, frameProcessor: FrameProcessor) => void removeFrameProcessor: (viewTag: number) => void /** * Creates a new instance of a native Frame Processor Plugin. * The Plugin has to be registered on the native side, otherwise this returns `undefined`. * @param name The name of the Frame Processor Plugin. This has to be the same name as on the native side. * @param options (optional) Options, as a native dictionary, passed to the constructor/init-function of the native plugin. * @example * ```ts * const plugin = VisionCameraProxy.initFrameProcessorPlugin('scanFaces', { model: 'fast' }) * if (plugin == null) throw new Error("Failed to load scanFaces plugin!") * ``` */ initFrameProcessorPlugin: (name: string, options?: Record) => FrameProcessorPlugin | undefined } let hasWorklets = false let isAsyncContextBusy = { value: false } let runOnAsyncContext = (_frame: Frame, _func: () => void): void => { throw new CameraRuntimeError( 'system/frame-processors-unavailable', 'Frame Processors are not available, react-native-worklets-core is not installed!', ) } try { assertJSIAvailable() // eslint-disable-next-line @typescript-eslint/no-var-requires const { Worklets } = require('react-native-worklets-core') as typeof TWorklets isAsyncContextBusy = Worklets.createSharedValue(false) const asyncContext = Worklets.createContext('VisionCamera.async') runOnAsyncContext = Worklets.createRunInContextFn((frame: Frame, func: () => void) => { 'worklet' try { // Call long-running function func() } finally { // Potentially delete Frame if we were the last ref const internal = frame as FrameInternal internal.decrementRefCount() isAsyncContextBusy.value = false } }, asyncContext) hasWorklets = true } catch (e) { // Worklets are not installed, so Frame Processors are disabled. } let proxy: TVisionCameraProxy = { initFrameProcessorPlugin: () => { throw new CameraRuntimeError('system/frame-processors-unavailable', 'Frame Processors are not enabled!') }, removeFrameProcessor: () => { throw new CameraRuntimeError('system/frame-processors-unavailable', 'Frame Processors are not enabled!') }, setFrameProcessor: () => { throw new CameraRuntimeError('system/frame-processors-unavailable', 'Frame Processors are not enabled!') }, } if (hasWorklets) { // Install native Frame Processor Runtime Manager const result = CameraModule.installFrameProcessorBindings() as unknown if (result !== true) throw new CameraRuntimeError('system/frame-processors-unavailable', 'Failed to install Frame Processor JSI bindings!') // @ts-expect-error global is untyped, it's a C++ host-object proxy = global.VisionCameraProxy as TVisionCameraProxy // eslint-disable-next-line @typescript-eslint/no-unnecessary-condition if (proxy == null) { throw new CameraRuntimeError( 'system/frame-processors-unavailable', 'Failed to install VisionCameraProxy. Are Frame Processors properly enabled?', ) } } export const VisionCameraProxy: TVisionCameraProxy = { initFrameProcessorPlugin: proxy.initFrameProcessorPlugin, removeFrameProcessor: proxy.removeFrameProcessor, setFrameProcessor: proxy.setFrameProcessor, // TODO: Remove this in the next version // @ts-expect-error getFrameProcessorPlugin: (name, options) => { console.warn( '"getFrameProcessorPlugin" has been renamed to "initFrameProcessorPlugin". This function will be removed in the next release.', ) return proxy.initFrameProcessorPlugin(name, options) }, } declare global { // eslint-disable-next-line no-var var __frameProcessorRunAtTargetFpsMap: Record | undefined } function getLastFrameProcessorCall(frameProcessorFuncId: string): number { 'worklet' return global.__frameProcessorRunAtTargetFpsMap?.[frameProcessorFuncId] ?? 0 } function setLastFrameProcessorCall(frameProcessorFuncId: string, value: number): void { 'worklet' if (global.__frameProcessorRunAtTargetFpsMap == null) global.__frameProcessorRunAtTargetFpsMap = {} global.__frameProcessorRunAtTargetFpsMap[frameProcessorFuncId] = value } /** * Runs the given function at the given target FPS rate. * * For example, if you want to run a heavy face detection algorithm * only once per second, you can use `runAtTargetFps(1, ...)` to * throttle it to 1 FPS. * * @param fps The target FPS rate at which the given function should be executed * @param func The function to execute. * @returns The result of the function if it was executed, or `undefined` otherwise. * @example * * ```ts * const frameProcessor = useFrameProcessor((frame) => { * 'worklet' * console.log('New Frame') * runAtTargetFps(5, () => { * 'worklet' * const faces = detectFaces(frame) * console.log(`Detected a new face: ${faces[0]}`) * }) * }) * ``` */ export function runAtTargetFps(fps: number, func: () => T): T | undefined { 'worklet' // @ts-expect-error // eslint-disable-next-line @typescript-eslint/no-unsafe-assignment const funcId = func.__workletHash ?? '1' const targetIntervalMs = 1000 / fps // <-- 60 FPS => 16,6667ms interval const now = performance.now() const diffToLastCall = now - getLastFrameProcessorCall(funcId) if (diffToLastCall >= targetIntervalMs) { setLastFrameProcessorCall(funcId, now) // Last Frame Processor call is already so long ago that we want to make a new call return func() } return undefined } /** * Runs the given function asynchronously, while keeping a strong reference to the Frame. * * For example, if you want to run a heavy face detection algorithm * while still drawing to the screen at 60 FPS, you can use `runAsync(...)` * to offload the face detection algorithm to a separate thread. * * @param frame The current Frame of the Frame Processor. * @param func The function to execute. * @example * * ```ts * const frameProcessor = useFrameProcessor((frame) => { * 'worklet' * console.log('New Frame') * runAsync(frame, () => { * 'worklet' * const faces = detectFaces(frame) * const face = [faces0] * console.log(`Detected a new face: ${face}`) * }) * }) * ``` */ export function runAsync(frame: Frame, func: () => void): void { 'worklet' if (isAsyncContextBusy.value) { // async context is currently busy, we cannot schedule new work in time. // drop this frame/runAsync call. return } // Increment ref count by one const internal = frame as FrameInternal internal.incrementRefCount() isAsyncContextBusy.value = true // Call in separate background context runOnAsyncContext(frame, func) }