import type { Frame, FrameInternal } from './Frame'; import type { FrameProcessor } from './CameraProps'; import { Camera } from './Camera'; import { Worklets } from 'react-native-worklets-core'; import { CameraRuntimeError } from './CameraError'; type BasicParameterType = string | number | boolean | undefined; type ParameterType = BasicParameterType | BasicParameterType[] | Record; interface FrameProcessorPlugin { /** * Call the native Frame Processor Plugin with the given Frame and options. * @param frame The Frame from the Frame Processor. * @param options (optional) Additional options. Options will be converted to a native dictionary * @returns (optional) A value returned from the native Frame Processor Plugin (or undefined) */ call: (frame: Frame, options?: Record) => ParameterType; } interface TVisionCameraProxy { setFrameProcessor: (viewTag: number, frameProcessor: FrameProcessor) => void; removeFrameProcessor: (viewTag: number) => void; /** * Creates a new instance of a Frame Processor Plugin. * The Plugin has to be registered on the native side, otherwise this returns `undefined` */ getFrameProcessorPlugin: (name: string) => FrameProcessorPlugin | undefined; isSkiaEnabled: boolean; } Camera.installFrameProcessorBindings(); // @ts-expect-error global is untyped, it's a C++ host-object export const VisionCameraProxy = global.VisionCameraProxy as TVisionCameraProxy; // eslint-disable-next-line @typescript-eslint/no-unnecessary-condition if (VisionCameraProxy == null) { throw new CameraRuntimeError( 'system/frame-processors-unavailable', 'Failed to install VisionCameraProxy. Are Frame Processors properly enabled?', ); } declare global { // eslint-disable-next-line no-var var __frameProcessorRunAtTargetFpsMap: Record | undefined; } function getLastFrameProcessorCall(frameProcessorFuncId: string): number { 'worklet'; return global.__frameProcessorRunAtTargetFpsMap?.[frameProcessorFuncId] ?? 0; } function setLastFrameProcessorCall(frameProcessorFuncId: string, value: number): void { 'worklet'; if (global.__frameProcessorRunAtTargetFpsMap == null) global.__frameProcessorRunAtTargetFpsMap = {}; global.__frameProcessorRunAtTargetFpsMap[frameProcessorFuncId] = value; } /** * Runs the given function at the given target FPS rate. * * For example, if you want to run a heavy face detection algorithm * only once per second, you can use `runAtTargetFps(1, ...)` to * throttle it to 1 FPS. * * @param fps The target FPS rate at which the given function should be executed * @param func The function to execute. * @returns The result of the function if it was executed, or `undefined` otherwise. * @example * * ```ts * const frameProcessor = useFrameProcessor((frame) => { * 'worklet' * console.log('New Frame') * runAtTargetFps(5, () => { * 'worklet' * const faces = detectFaces(frame) * console.log(`Detected a new face: ${faces[0]}`) * }) * }) * ``` */ export function runAtTargetFps(fps: number, func: () => T): T | undefined { 'worklet'; // @ts-expect-error // eslint-disable-next-line @typescript-eslint/no-unsafe-assignment const funcId = func.__workletHash ?? '1'; const targetIntervalMs = 1000 / fps; // <-- 60 FPS => 16,6667ms interval const now = performance.now(); const diffToLastCall = now - getLastFrameProcessorCall(funcId); if (diffToLastCall >= targetIntervalMs) { setLastFrameProcessorCall(funcId, now); // Last Frame Processor call is already so long ago that we want to make a new call return func(); } return undefined; } const isAsyncContextBusy = Worklets.createSharedValue(false); const asyncContext = Worklets.createContext('VisionCamera.async'); const runOnAsyncContext = Worklets.createRunInContextFn((frame: Frame, func: () => void) => { 'worklet'; try { // Call long-running function func(); } finally { // Potentially delete Frame if we were the last ref (frame as FrameInternal).decrementRefCount(); isAsyncContextBusy.value = false; } }, asyncContext); /** * Runs the given function asynchronously, while keeping a strong reference to the Frame. * * For example, if you want to run a heavy face detection algorithm * while still drawing to the screen at 60 FPS, you can use `runAsync(...)` * to offload the face detection algorithm to a separate thread. * * @param frame The current Frame of the Frame Processor. * @param func The function to execute. * @example * * ```ts * const frameProcessor = useFrameProcessor((frame) => { * 'worklet' * console.log('New Frame') * runAsync(frame, () => { * 'worklet' * const faces = detectFaces(frame) * const face = [faces0] * console.log(`Detected a new face: ${face}`) * }) * }) * ``` */ export function runAsync(frame: Frame, func: () => void): void { 'worklet'; if (isAsyncContextBusy.value) { // async context is currently busy, we cannot schedule new work in time. // drop this frame/runAsync call. return; } // Increment ref count by one (frame as FrameInternal).incrementRefCount(); isAsyncContextBusy.value = true; // Call in separate background context runOnAsyncContext(frame, func); }