import type { Frame, FrameInternal } from './Frame'; import { Camera } from './Camera'; import { Worklets } from 'react-native-worklets/src'; // Install VisionCamera Frame Processor JSI Bindings and Plugins Camera.installFrameProcessorBindings(); type BasicParameterType = string | number | boolean | undefined; type ParameterType = BasicParameterType | BasicParameterType[] | Record; type FrameProcessor = (frame: Frame, parameters?: Record) => unknown; type TFrameProcessorPlugins = Record; /** * All natively installed Frame Processor Plugins. */ export const FrameProcessorPlugins = global.FrameProcessorPlugins as TFrameProcessorPlugins; const lastFrameProcessorCall = Worklets.createSharedValue(performance.now()); /** * Runs the given function at the given target FPS rate. * * For example, if you want to run a heavy face detection algorithm * only once per second, you can use `runAtTargetFps(1, ...)` to * throttle it to 1 FPS. * * @param fps The target FPS rate at which the given function should be executed * @param func The function to execute. * @returns The result of the function if it was executed, or `undefined` otherwise. * @example * * ```ts * const frameProcessor = useFrameProcessor((frame) => { * 'worklet' * console.log('New Frame') * const face = runAtTargetFps(5, () => { * 'worklet' * const faces = detectFaces(frame) * return faces[0] * }) * if (face != null) console.log(`Detected a new face: ${face}`) * }) * ``` */ export function runAtTargetFps(fps: number, func: () => T): T | undefined { 'worklet'; const targetIntervalMs = 1000 / fps; // <-- 60 FPS => 16,6667ms interval const now = performance.now(); const diffToLastCall = now - lastFrameProcessorCall.value; if (diffToLastCall >= targetIntervalMs) { lastFrameProcessorCall.value = now; // Last Frame Processor call is already so long ago that we want to make a new call return func(); } return undefined; } const asyncContext = Worklets.createContext('VisionCamera.async'); const runOnAsyncContext = Worklets.createRunInContextFn((frame: Frame, func: () => void) => { 'worklet'; try { // Call long-running function func(); } finally { // Potentially delete Frame if we were the last ref (frame as FrameInternal).decrementRefCount(); } }, asyncContext); /** * Runs the given function asynchronously, while keeping a strong reference to the Frame. * * For example, if you want to run a heavy face detection algorithm * while still drawing to the screen at 60 FPS, you can use `runAsync(...)` * to offload the face detection algorithm to a separate thread. * * @param frame The current Frame of the Frame Processor. * @param func The function to execute. * @example * * ```ts * const frameProcessor = useFrameProcessor((frame) => { * 'worklet' * console.log('New Frame') * runAsync(frame, () => { * 'worklet' * const faces = detectFaces(frame) * const face = [faces0] * console.log(`Detected a new face: ${face}`) * }) * }) * ``` */ export function runAsync(frame: Frame, func: () => void): void { 'worklet'; // Increment ref count by one (frame as FrameInternal).incrementRefCount(); // Call in separate background context runOnAsyncContext(frame, func); }