73 lines
2.0 KiB
Python
73 lines
2.0 KiB
Python
|
import random
|
||
|
import math
|
||
|
|
||
|
class BirthdayProblem(object):
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
|
||
|
def birthday_problem(problem_size=365):
|
||
|
birthdays = set()
|
||
|
while True:
|
||
|
new_birthday = random.randint(1, problem_size)
|
||
|
if new_birthday in birthdays:
|
||
|
return len(birthdays) + 1
|
||
|
birthdays.add(new_birthday)
|
||
|
|
||
|
|
||
|
def theoretical_average(problem_size):
|
||
|
probabilities = []
|
||
|
contributions = []
|
||
|
for n in range(1, problem_size):
|
||
|
probability = (float(n-1) / problem_size) * falling_factorial_over_exponentiation(problem_size, n-1)
|
||
|
contribution = n * probability
|
||
|
probabilities.append(probability)
|
||
|
contributions.append(contribution)
|
||
|
return sum(contributions)
|
||
|
|
||
|
|
||
|
def falling_factorial(n, k):
|
||
|
product = 1
|
||
|
while k > 0:
|
||
|
product *= n
|
||
|
n -= 1
|
||
|
k -= 1
|
||
|
return product
|
||
|
|
||
|
|
||
|
|
||
|
def falling_factorial_over_exponentiation(n, k):
|
||
|
orig = n
|
||
|
product = float(1)
|
||
|
while k > 0:
|
||
|
product *= n
|
||
|
product = product/orig
|
||
|
n -= 1
|
||
|
k -= 1
|
||
|
return product
|
||
|
|
||
|
|
||
|
def run_birthday_problem_n_times(times_to_run, problem_size=365):
|
||
|
return [birthday_problem(problem_size) for i in range(int(times_to_run))]
|
||
|
|
||
|
|
||
|
def number_of_people_to_times_occured(runs):
|
||
|
number_of_people_to_times_occured = {}
|
||
|
for run in runs:
|
||
|
number_of_people_to_times_occured[run] = number_of_people_to_times_occured.get(run, 0) + 1
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
times_to_run = 131072
|
||
|
while times_to_run <= 131072:
|
||
|
for problem_size in range(4000, 5000, 100):
|
||
|
average = sum(run_birthday_problem_n_times(times_to_run, problem_size=problem_size))/float(times_to_run)
|
||
|
print "problem size {3} ran {0} times, average was {1}, theoretical average is {2}".format(
|
||
|
times_to_run,
|
||
|
average,
|
||
|
theoretical_average(problem_size),
|
||
|
problem_size
|
||
|
)
|
||
|
print math.fabs(average - theoretical_average(problem_size))
|
||
|
times_to_run *= 2
|